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Abstract

Two-dimensional shear-deformable laminated plate theories can be classi®ed as equivalent single-layer theories
and layerwise theories. Layerwise theories lead to better approximations than equivalent single-layer theories, but

the large number of independent unknowns in these theories requires more computational power in comparison
with calculations, based on equivalent single-layer theories.
The quality of any equivalent single-layer theory based calculation is in¯uenced by the correct determination of

the e�ective sti�nesses. Many theories result in identical sti�nesses for bending, tension/compression, in-plane shear
and torsion. The di�erences between the approaches are connected with the transverse shear sti�nesses. The method
of determination of the transverse shear sti�nesses proposed here leads to expressions which depend on the solution

of a Sturm±Liouville-problem. For special cases, the sti�nesses are calculated and compared with results from other
authors. It can be shown that the present approach can be useful not only in the case of laminated plates, but also
for sandwich plates. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Motivation

The classical plate theory based on Kirchho�'s hypotheses (Kirchho�, 1850) shows a good agreement
with experimental observations and three-dimensional solutions in the case of the global characteristics
(e.g. de¯ections, eigenfrequencies), if the plates are made from metals and the behaviour can be
described by geometrically linear equations. As composite materials (laminates, sandwiches) in some
applications (e.g., aerospace industries) o�er advantages over traditional materials, they increasingly
substitute for these traditional materials. When using composites as a plate material, it is necessary to
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take into account that, e.g., the transverse shear modulus has a great in¯uence on the structural
mechanics analysis and should be determined accurately. The classical plate theory only predicts the
response of thin isotropic plates with reasonable accuracy, yet it usually fails to yield similar accuracy
for composite plates of similar con®guration (Qi and Knight, 1996).

The reason for an incorrect determination of the global characteristics of plates made from sandwich
or laminated materials by the classical plate theory is that Kirchho�'s theory ignores two transverse
shear stresses. Starting with the pioneering works of E. Reissner (1944, 1945, 1947), Hencky (1947),
BolleÂ (1947a, 1947b), Mindlin (1951) and others, there were several proposals for improved estimates of
the global characteristics. Reissner introduced some assumptions for the stress distributions in the
transverse direction, Hencky, BolleÂ and Mindlin, following Timoshenko's beam theory (Timoshenko,
1921), proposed an extended kinematical model with additional degrees of freedom for each material
point of the reference (middle) surface. These ideas are the bases for the ®rst re®ned plate theories for
plates made from sandwich and laminated materials which are now called ®rst order shear deformable
theories (FOSDT).

The keypoint of the success of any FOSDT is the correct determination of the transverse shear
sti�nesses. There are several proposals published (e.g. Bert, 1973; Whitney, 1973; Chow, 1971;
Vlachoutsis, 1992; Qi and Knight, 1996; Knight and Qi, 1997) which are based on stress assumptions,
kinematical assumptions or energy principles. A comprehensive analysis of di�erent approaches was
presented by (Rikards et al., 1990).

An alternative method of determination of the sti�nesses based on a theory of deformable directed
surfaces and on the comparison of the eigenfrequencies of dual two-dimensional and three-dimensional
problems was proposed for homogeneous plates and shells by Zhilin (1976). In the following, the
determination of the e�ective sti�nesses is realized, comparing the forces and moments of dual problems
in the case of plates whose material is inhomogeneous in the thickness direction. In the case of
orthotropic materials, the expressions for all sti�nesses can be derived. Some numerical examples show
the possibilities of the present approach, if the plate is made from a sandwich or a layered material with
assumed isotropic properties.

2. Liznear basic plate equations

Let us consider the representation of a plate homogeneous or inhomogeneous in the thickness
direction by a deformable surface. Each point of this surface is an in®nitesimal small rigid body with 5
degrees of freedom (3 translations and 2 rotations). The kinematics for Cartesian coordinates are shown
in Fig. 1 schematically. Using the continuum mechanics approach for formulating the basic linear plate
equations and the consideration that our plate model is a two-dimensional elastic continuum, the
following equations can be deduced in the case of small displacements, small rotations and under the
assumption that the strain energy density is a quadratic form (Zhilin, 1976; Altenbach and Zhilin, 1988):

. the static equations of equilibrium

r � T� q � 0,

r �M� T� �m � 0: �1�
T, M are the force tensor (in-plane forces, transverse shear forces) and the couple tensor (bending

couples, torsional couples), see (Fig. 2, q, mÐthe surface force and the surface couple vectors, T�Ð
the vector's invariant of the force tensor (e.g. Lurie, 1990), HÐthe nabla operator vector, �Ðthe
scalar (inner) product and (...)T denotes transposed.
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. the linear geometric equations

mmm � �ru � a�sym,

ggg � ru � n� c � jjj,

kkk � rjjj, �2�
with aÐthe ®rst metric tensor of the surface (e.g. Gould, 1988) and

c � ÿa� n;

Fig. 1. Kinematics of the deformable directed surface.

Fig. 2. Forces and couples of the deformable directed surface.
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n denotes the normal unit vector to the surface, �Ðvector product. mm, gg and kk are the in-plane
deformation tensor, the transverse shear deformation vector and the ¯exural and torsional
deformation tensor, respectively, and u, jjÐthe translation and the rotation vectors. (...)sym means the
symmetric part.

. the strain energy density

W�mmm,ggg,kkk� � 1

2
mmm � �A � �mmm� mmm � �B � �kkk� 1

2
kkk � �C � �kkk� 1

2
ggg � GGG � ggg� ggg��GGG1� � mmm� GGG2� � kkk� �3�

Here, the 4th rank tensors A, B, C, the 3rd rank tensors gg1, gg2 and the 2nd rank tensor gg are
sti�ness tensors depending on the material properties and the thickness geometry.

. the constitutive equations

T � a � @W

@mmm
� A � �mmm� B � �kkk� ggg � GGG1,

T � n � @W

@ggg
� GGG � ggg� GGG1� � mmm� GGG2� � kkk,

MT � @W

@kkk
� mmm � �B� C � �kkk� ggg � GGG2 �4�

The sti�ness tensors contain a great number of components (36 in the general anisotropic case). For
applications, there are two possibilities to reduce the number of linear independent components: the
assumption of special cases of anisotropy and the assumption of symmetric properties in the thickness
direction. Assuming a global orthotropic material behaviour (the Cartesian coordinate axes are the axes
of orthotropy), the sti�ness tensors have a special representation (Zhilin, 1976; Altenbach, 1987):

A � A11a1a1 � A12�a1a2 � a2a1� � A22a2a2 � A44a4a4,

B � B13a1a3 � B14a1a4 � B23a2a3 � B24a2a4 � B42a4a2,

C � C22a2a2 � C33a3a3 � C34�a3a4 � a4a3� � C44a4a4,

GGG � G1a1 � G2a2,

GGG1 � 0, GGG2 � 0, �5�
with

a1 � a � e1e1 � e2e2,

a2 � e1e1 ÿ e2e2,

a3 � c � e1e2 ÿ e2e1,

a4 � e1e2 � e2e1;
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e1, e2 are the unit basic vectors for the surface coordinates. The unit vectors are orthogonal, so that the
tensors ai (i=1,2,3,4) are connected by

1

2
ai� � aj � dij,

dij �
�
1 i � j,
0 i 6� j:

For the use of Eq. (5), the problem of identi®cation of the sti�nesses, A11, A22, A12, A44, B13, B14, B23,
B24, B42, C33, C22, C34, C44, G1 and G2, should be solved. The identi®cation procedures are based on the
solution of static or dynamic problems with the help of the two-dimensional theory (assuming a
deformable surface) and the three-dimensional theory (taking into account the third directionÐthe
thickness). For the determination of the sti�nesses we have to compare both solutions for the averaged
stresses or the eigenfrequencies. In the case of sandwich or laminated plates, we prefer static problems.
A suitable method of identi®cation will be presented in the next section. The use of dynamical
characteristics for the identi®cation of sti�nesses in the case of homogeneous plates is presented by
Zhilin (1976).

Until now, no answer has been given to the question what kind of static problems we have to use for
the identi®cation. So the best choice are problems leading to simple solutions in the two-dimensional
and the three-dimensional cases. Below, we discuss problems related to rectangular deformable directed
surfaces and three-dimensional thin bodies with a rectangular middle surface. This assumption leads to
the following representations (x1, x2, z Cartesian coordinates, 1, 2, n indices connected with the
Cartesian coordinates) of:

. the displacement and the rotation vectors

u � u1e1 � u2e2 � wn

jjj � ÿj2e1 � j1e2, �6�

u1, u2 are the in-plane displacements, wÐthe de¯ections and j1, j2Ðthe rotations (Fig. 1).
. the force and the couple tensors

T � T1e1e1 � T12�e1e2 � e2e1� � T2e2e2 � T1ne1n� T2ne2n,

M �M1e1e2 ÿM12�e1e1 ÿ e2e2� ÿM2e2e1: �7�
T1, T12 and T2 are the in-plane forces; T1n and T2nÐthe out-of-plane forces; M1 and M2Ðthe
bending couples and M12Ðthe torsion couples (Fig. 2).

. the deformation tensors

mmm � m1e1e1 � m12�e1e2 � e2e1� � m2e2e2,

ggg � g1e1 � g2e2,

kkk � k1e1e2 ÿ k12e1e1 � k21e2e2 ÿ k2e2e1: �8�
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3. Identi®cation of the sti�nesses

3.1. Orthotropic material behaviour

The starting point of the identi®cation of all sti�nesses is the generalized Hooke's law with respect to
orthotropic material behaviour (the axes of orthotropy are parallel to the coordinate axes) (e.g. Lai et
al., 1993)

e1 � u�1,1 �
1

E1
s1 ÿ n21

E2
s2 ÿ nn1

En
sn,

e2 � u�2,2 �
1

E2
s2 ÿ n12

E1
s1 ÿ nn2

En
sn,

en � u�n,n �
1

En
sn ÿ n1n

E1
s1 ÿ n2n

E2
s2,

g12 � u�1,2 � u�2,1 �
t12
G12

,

gn1 � u�1,n � u�n,1 �
tn1
Gn1

,

g2n � u�2,n � u�n,2 �
t2n
G2n

, �9�

with u� as the displacement vector when the three-dimensional elasticity is used and

nijEj � njiEi:

In the case of plates that are inhomogeneous in the thickness direction, all material parameters
(Young's moduli: Ei in the i-direction; Poisson's ratio: nij for the transverse strain in the j-direction when
stressed in the i-th direction; and shear moduli: Gij in the ij-plane) are functions of the coordinate in the
thickness direction, e.g. Ei=Ei(z ).

Below, we discuss the solutions of three static problems from the viewpoint of the two-dimensional
and the three-dimensional theories. From the ®rst two problems, we get the classical stretching, in-plane
shear, bending, torsion and coupling sti�nesses. From the last problem, the transverse shear sti�nesses
can be derived. The comparison of both two-dimensional and three-dimensional solutions is based on
calculated forces and couples (two-dimensional solutions) and averaged stresses (three-dimensional case).
The averaging can be done in the case of plates by very simple formulae:

T � ha � sssi, M � ha � sssz�ci, �10�
ss denotes the stress tensor and h(...)i the integration over the plate thickness


�. . .�� � �h=2
ÿh=2
�. . .�dz:
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3.2. Classical sti�nesses

3.2.1. Problem 1: bending and stretching
From the following kinematical assumption, we get the two-dimensional solution

u � D1x1e1 �D2x2e2 ÿ 1

2

�
x2
1

R1
� x2

2

R2

�
n, jjj � ÿx2

R2
e1 � x1

R1
e2, �11�

D1, D2, R1 and R2 are constants. The kinematical ®eld Eq. (11) corresponds to Kirchho�'s plate
behaviour (Kirchho�, 1850). From Eq. (2), we calculate

mmm � D1e1e1 �D2e2e2, ggg � 0, kkk � 1

R1
e1e2 ÿ 1

R2
e2e1 �12�

With respect to the constitutive equations Eq. (4), we ®nally obtain:

T1 � D1�A11 � 2A12 � A22� �D2�A11 ÿ A22� ÿ B13 � B23 ÿ B14 ÿ B24

R1
ÿ B13 � B23 � B14 � B24

R2
,

T2 � D1�A11 ÿ A22� �D2�A11 ÿ 2A12 � A22� ÿ B13 ÿ B23 ÿ B14 � B24

R1
ÿ B13 ÿ B23 � B14 ÿ B24

R2
,

M1 � D1�ÿB13 ÿ B23 � B14 � B24� ÿD2�B13 ÿ B23 ÿ B14 � B24� � C33 ÿ 2C34 � C44

R1
� C33 ÿ C44

R2
,

M2 � ÿD1�B13 � B23 � B14 � B24� ÿD2�B13 ÿ B23 � B14 ÿ B24� � C33 ÿ C44

R1
� C33 � 2C34 � C44

R2
:

�13�
The nonzero three-dimensional strain tensor components that are dual to the two-dimensional

deformation tensors Eq. (12) are

e1 � D1 � z

R1
,

e2 � D2 � z

R2
: �14�

Assuming the state of plane stress from Hooke's law Eq. (9), we can calculate the stresses:

s1 � E1

1ÿ n12n21
�e1 � n21e2�,

s2 � E2

1ÿ n12n21
�e2 � n12e1�: �15�

Taking Eq. (14) into account, the integration of the stresses over the thickness results in:

T1 � D1

�
E1

1ÿ n12n21

�
� 1

R1

�
E1z

1ÿ n12n21

�
�D2

�
n21E1

1ÿ cn12n21

�
� 1

R2

�
n21E1z

1ÿ n12n21

�
,
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T2 � D2

�
E2

1ÿ n12n21

�
� 1

R2

�
E2z

1ÿ n12n21

�
�D1

�
n12E2

1ÿ n12n21

�
� 1

R1

�
n12E2z

1ÿ n12n21

�
,

M1 � D1

�
E1z

1ÿ n12n21

�
� 1

R1

�
E1z

2

1ÿ n12n21

�
�D2

�
n21E1z

1ÿ n12n21

�
� 1

R2

�
n21E1z

2

1ÿ n12n21

�
,

M2 � D2

�
E2z

1ÿ n12n21

�
� 1

R2

�
E2z

2

1ÿ n12n21

�
�D1

�
n12E2z

1ÿ n12n21

�
� 1

R1

�
n12E2z

2

1ÿ n12n21

�
: �16�

The comparison of Eqs. (13) and (16) leads to ten unknown e�ective sti�nesses:

A11 � 1

4

�
E1 � E2 � 2E1n21

1ÿ n12n21

�
,

A12 � 1

4

�
E1 ÿ E2

1ÿ n12n21

�
,

A22 � 1

4

�
E1 � E2 ÿ 2E1n21

1ÿ n12n21

�
,

B13 � ÿ1
4

�
E1 � E2 � 2E1n21

1ÿ n12n21
z

�
,

B23 � ÿB14 � ÿ1
4

�
E1 ÿ E2

1ÿ n12n21
z

�
,

B24 � 1

4

�
E1 � E2 ÿ 2E1n21

1ÿ n12n21
z

�
,

C33 � 1

4

�
E1 � E2 � 2E1n21

1ÿ n12n21
z2
�
,

C34 � ÿ1
4

�
E1 ÿ E2

1ÿ n12n21
z2
�
,

C44 � 1

4

�
E1 � E2 ÿ 2E1n21

1ÿ n12n21
z2
�

�17�

3.2.2. Problem 2: in-plane shear

Now we start from the following kinematical assumptions for the two-dimensional deformable
surface:
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u � S1x2e1 � S1x1e2 ÿ S2x1x2n, jjj � ÿS2�x1e1 ÿ x2e2� �18�
The dual three-dimensional strain tensor components are:

g12 � u�1,2 � u�2,1 � S1 � S2z �19�
Repeating the calculations of Problem 1 we ®nally get:

A44 � hG12i,

B42 � ÿhG12zi,

C22 �


G12z

2
�

�20�

3.3. Transverse shear sti�nesses

3.3.1. Problem 3: torsion
Considering a two-dimensional deformable surface (|x1| R l1, |x2| < 1) with constant torsional

couples on boundaries x1=2l1, we assume the following displacements and rotations:

u � u2�x1�e2,

jjj � ÿj2�x1�e1: �21�
After the determination of the deformations tensors by Eq. (2), we can calculate the force and couple

tensors from the constitutive equations Eq. (4):

T � �A44u2,1 ÿ B42j2,1�a4 � �G1 ÿ G2�j2e2n,

M � �B42u2,1 ÿ C22j2,1�a2: �22�
Both tensors should satisfy the equations of equilibrium Eq. (1), so we get

A44u2,11 ÿ B42j2,11 � 0,

B42u2,11 ÿ C22j2,11 � �G1 ÿ G2�j2 � 0: �23�
Taking into account the boundary conditions on x1=2l1:

2e1�T � 0,

2e1�M �2M�12e1

(M�12 is a constant torsional couple), the solutions of Eq. (23) are:

u2 � ÿM�12
B42

A44C22 ÿ B2
42

sinh lx1

l cosh ll1
,

j2 � ÿM�12
A44

A44C22 ÿ B2
42

sinh lx1

l cosh ll1
, �24�
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with

l2 � �G1 ÿ G2�A44ÿ
A44C22 ÿ B2

42

� :
From Eq. (24), we calculate the force T12 and the couple M12

T12 � 0, M12 �M�12
cosh lx1

cosh ll1
�25�

The dual solution for a three-dimensional elastic strip (|x1| R l1, |x2| <1, |z| R h/2) can be derived
from the following displacement ®eld: u�1 � w� � 0, u�2 � u�2�x1,z�: The corresponding stress tensor is

sss � G12
@u�2
@x1

a4 � G2n
@u�2
@z
�e2n� ne2�: �26�

From the three-dimensional equilibrium equations (e.g. Lai et al., 1993), it follows that

G12
@2u�2
@x2

1

� @

@z

�
G2n

@u�2
@z

�
� 0: �27�

The solution can be derived under the assumption sn=t1n=t2n=0 at |z|=h/2. Using Fourier's
separation method, u�2�x1,z� � X�x1�Z�z�, we ®nally get a Sturm±Liouville problem:

d

dz

�
G2n

dZ

dz

�
� l2�G12Z � 0,

dZ

dz

����
jzj�

h

2

� 0, �28�

and

d 2X

dx2
1

ÿ l2�X � 0: �29�

From all solutions of Eq. (28), we select the lowest nontrivial positive value l�. The solution of Eq.
(29) then results in:

X�x1� � B
sinh l�x1

l� cosh l�l1

and the displacement u�2 can be expressed by

u�2 � BZ�z� sinh l�x1

l� cosh l�l1
:

From this displacement ®eld, the force T12 and the couple M12 follow:

T12 � ht12i � B


G12Z�z�

�cosh l�x1

cosh l�l1
,

M12 � ÿht12zi � ÿB


G12Z�z�z

�cosh l�x1

cosh l�l1
:

Integrating Eq. (28) and taking into account the boundary conditions for Z(z ), the identity
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hG12Z(z )i=0 is deduced. The constant B can be computed from the condition that at x1=l1 M12 �M�12:
After some calculation, we ®nd

T12 � 0, M12 �M�12
cosh l�x1

cosh l�l1
, u�2 � ÿ

Z�z�M�12

G12Z�z�z

� sinh l�x1

l� cosh l�l1
:

From the comparison of both the two-dimensional and the three-dimensional solution, we
conclude

l � l� �
�����������������������������
�G1 ÿ G2�A44

A44C22 ÿ B2
42

s
: �30�

In this case, we obtain the same values for the force T12 and the couple M12, calculated by the two-
dimensional and the three-dimensional theories. If we compare both kinematic ®elds, we must demand
that, in the weighted least square sense,D

G12

ÿ
u�2 ÿ u2 ÿ zj2

�2E � min

u2,j2
:

The stationary conditions result in

u2 � M�12hG12zi
hG12i



G12z2

�ÿ 
G12z2
� sinh l�x1

l� cosh l�l1
,

j2 � ÿ
M�12hG12i

hG12i


G12z2

�
ÿ


G12z2

� sinh l�x1

l� cosh l�l1
:

This solution is equivalent to Eq. (24).
So we ®nd only one equation Eq. (30) for the determination of the two sti�nesses G1, G2. From the

corresponding problems for a two-dimensional strip (|x1| <1, |x2| R l2) and the dual three-dimensional
strip (|x1|<1, |x2|R l2, |z|R h/2) under constant torsional moments at |x2|R l2, we get

Z �
�����������������������������
�G1 � G2�A44

A44C22 ÿ B2
42

s
, �31�

Z is the lowest nontrivial positive solution of the following Sturm±Liouville problem:

d

dz

�
G1n

d ~Z

dz

�
� Z2G12

~Z � 0,
d ~Z

dz

����
jzj�

h

2

� 0:

Finally, from Eqs. (30) and (31), we can calculate the sti�nesses:

G1 � 1

2
�l2 � Z2�A44C22 ÿ B2

42

A44
,

G2 � 1

2
�Z2 ÿ l2�A44C22 ÿ B2

42

A44
: �32�
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Remark: We have obtained all 15 sti�nesses which take place in the theory of deformable directed
surfaces. Most of them Eq. (17) are the same as in the standard textbooks in the theory of laminated
plates (e.g. Altenbach et al., 1996). These sti�nesses are some average values of the material properties
and the thickness geometry over the thickness. The last two sti�nesses (G1, G2) are di�erent from the
well-known proposals because they depend on the solution of two Sturm±Liouville problems. The
following discussion of special cases shows that these non-traditional sti�nesses are useful in a wide
range of cross-section con®gurations. They can be recommended for both laminates and sandwiches.

4. Examples

4.1. Isotropic homogeneous plate

Assuming a plate made from isotropic material with homogeneous properties in the thickness
direction, the sti�nesses can be calculated by formulae following from the general expressions (Eqs. (17),
(20) and (32)). The symmetry of the material properties and the geometrical parameters cause the
vanishing values of the coupling sti�nesses, that means B00. The membrane and the plate sti�nesses
can be estimated by:

A11 � 1

2

Eh

1ÿ n
,

A12 � 0,

A22 � 1

2

Eh

1� n
,

A44 � Gh � A22,

C33 � Eh3

24�1ÿ n� ,

C34 � 0,

C44 � Eh3

24�1� n� ,

C22 � Gh3

12
� C44: �33�

E, n, G=E/2(1+n ) are the Young's modulus, the Poisson's ratio and the shear modulus, respectively,
of the isotropic material which are constant with respect to the thickness coordinate z. The classical
plate sti�ness (¯exural rigidity) results from

C33 � C44 � Eh3

12�1ÿ n2� :
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This is the same value as in the classical textbooks (e.g. Love, 1944).
The transverse sti�ness results from Eq. (30) with B42=0,

G � l2C22,

where l is the solution of the following Sturm±Liouville problem:

d 2Z

dz2
� l2Z � 0,

dZ

dz

����
jzj�

h

2

� 0:

Its solution, cos lz=0, leads to the lowest nontrivial positive eigenvalue, l=p/h. We ®nally get

G � p2

h2
Gh3

12
� p2

12
Gh:

The transverse shear sti�ness is determined with a shear correction coe�cient proposed ®rst by Mindlin
(1951). This value is very close to Reissner's proposal (instead of p 2/12 in Reissner (1944), the shear
correction was 5/6).

4.2. Sandwich plate

Let us consider a typical sandwich (Fig. 3) with a very soft core. We assume that hc>>hf and Ec<<Ef ,
Gc<<Gf . Each layer is isotropic, that means Gc=Ec/2(1+nc ) etc. In addition, we presume the symmetry
in the thickness direction (B00). From Eqs. (17) and (20), we can calculate (h=hc+hf ):

A11 � 1

2

�
Efhf
1ÿ nf

� Echc
1ÿ nc

�
,

A22 � 1

2

�
Efhf
1� nf

� Echc
1� nc

�
,

A44 � Gfhf � Gchc,

C33 � 1

24

"
Ef

ÿ
h3 ÿ h3c

�
1ÿ nf

� Ech
3
c

1ÿ nc

#
,

C44 � 1

24

"
Ef

ÿ
h3 ÿ h3c

�
1� nf

� Echc
1� nc

#
,

C22 � 1

12

h
Gf

ÿ
h3 ÿ h3c

�� Gch
3
c

i
� C44: �34�

The ¯exural rigidity of the sandwich follows from
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C33 � C44 � 1

12

"
Ef

ÿ
h3 ÿ h3c

�
1ÿ n2f

� Ech
3
c

1ÿ n2c

#
:

The transverse shear sti�ness in the case of sandwiches follows from the same formula as in
Section 4.1,

G � l2C22, �35�

but the determination of l is di�erent. Now we assume the following stress tensor:

sss �

8>>>><>>>>:
Gf

�
@u�2
@x1

a4 � @u
�
2

@z
�e2n� ne2�

�
hc
2

RjzjRh

2
,

Gc

�
@u�2
@x1

a4 � @u
�
2

@z
�e2n� ne2�

�
jzjRhc

2

:

The boundary conditions on the upper and the lower boundaries (|z|=h/2) are stress-free conditions

@u�2
@z

����
jzj�

h

2

� 0:

In addition, we have to ful®l the continuity conditions on |z|=hc/2,

u�2
��
jzj�

hc
2
ÿ0
� u�2

��
jzj�

hc
2
�0
,

Gc
@u�2
@z

����
jzj�

hc
2
ÿ0
� Gf

@u�2
@z

����
jzj�

hc
2
�0
:

Using Fourier's separation method, u�2�x1,z� � X�x1�Z�z�, we get the following eigenvalue problem:

Fig. 3. Geometrical and material properties of a typical sandwich.
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Gf

�
@2Z

@z2
� l2Z

�
� 0

hc
2

RjzjRh

2
,

Gc

�
@2Z

@z2
� l2Z

�
� 0 jzjRhc

2
,

with

@Z

@z

����
jzj�

h

2

� 0, Zj
jzj�

hc
2
ÿ0
� Zj

jzj�
hc
2
�0
,

Gc
@Z

@z

����
jzj�

hc
2
ÿ0
� Gf

@Z

@z

����
jzj�

hc
2
�0

and Z(z )=ÿZ(ÿz ). The solution can be obtained by

Z�z� �

8>>>>>>>><>>>>>>>>:

A cos l

�
zÿ h

2

�
hc
2

RzRh

2
,

B sin lz jzjRhc
2
,

ÿA cos l

�
z� h

2

�
ÿh
2
RzRÿ hc

2

:

Replacing Gc/Gf by m, the constants A and B should satisfy the system

A cos l
hf
2
ÿ B sin l

hc
2
� 0,

A sin l
hf
2
ÿ Bm cos l

hc
2
� 0:

This system of equations has a solution if the determinant is zero

m cos l
hf
2

cos l
hc
2
ÿ sin l

hf
2

sin l
hc
2
� 0:

Introducing g=lh/2 and a=hc/h, ®nally we get

m cos g�1ÿ a�cos gaÿ sin g�1ÿ a�sin ga � 0, �36�

with 0 R m<1 and 0 R a R 1. In the case of very soft cores, the plate sti�ness (¯exural rigidity) and
the transverse shear sti�ness can be computed approximately

C33 � C44 � 1

4

Efh
2hf

1ÿ n2f
,
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G � Gch, �37�
whenever m is smaller than the ratio hf /h. Both values Eq. (37) were ®rst published by Reissner (1947).

4.3. Three-layer plate

The e�ective sti�nesses of laminated plates can be calculated by several approaches corresponding to
the mechanics of composites (e.g. Christensen, 1979). There are two approaches which can be regarded
as boundaries (Hill, 1964): the isostrain or acting in parallel model (Voigt) and the isostress or acting in
series model (Reuss) (e.g. Chawla, 1987). It is well known that the membrane and the plate sti�nesses
can be identi®ed by the assumption of the acting in parallel model. For the transverse shear sti�nesses,
this assumption can result in some inaccuracies in dependence on the thicknesses and the material
properties of each layer. As an example, we consider a three-layer system similar to the sandwich

Fig. 4. Normalized transverse shear sti�nesses ~G calculated by di�erent models for a given ratio a (all sti�nesses are normalized by

p 2Gfh/12, p.m.Ðpresent model).
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structure in Section 4.2. For di�erent values of the shear moduli and the thicknesses, three transverse
shear sti�nesses are calculated by

. Eqs. (35) and (36) (G ),

. acting in parallel model

GP � p2

12
�Gfhf � Gchc�,

. acting in series model

GS � p2

12

GfhfGchc
Gfhf � 4Gchc

:

Fig. 4 shows some calculations of normalized transverse shear sti�nesses for a given ratio a. From
these calculations, it follows that the acting in parallel model is the upper bound and the acting in series
model is the lower bound for the transverse shear sti�ness. In the case of typical sandwich values, the
e�ective transverse shear sti�ness can be computed approximately by the Reuss model, otherwise for
layered structures not far from homogeneous plates, this sti�ness can be computed by the Voigt model.

5. Conclusions

The quality of structural mechanics analysis of thin sandwich and laminated plates by an equivalent
layer theory is more in¯uenced by the transverse shear sti�ness than in the case of thin plates which are
homogeneous in thickness direction. In the present paper, the question of uni®ed estimation of the
transverse shear sti�ness for sandwiches and laminates is discussed. It is shown that the traditional
models of Voigt and Reuss yield inaccurate results in some situations. The Voigt model, which can be
recommended for any membrane, coupled and plate sti�nesses, only works in the case of layered
structures with equal thicknesses and approximately identical elastic properties in each layer. For typical
sandwiches, the transverse shear sti�ness should be computed by the Reuss model. The other e�ective
sti�nesses follow again from the Voigt model. The proposed method of calculating the transverse
sti�nesses works in both situations. In addition, following the discussion of this work, the e�ective
sti�nesses of viscoelastic layered system can be obtained by similar formulae. Further investigations
should be directed to the question of how the proposed sti�nesses in¯uence the accuracy of the
structural analysis of laminates. In addition, the present approach should be compared with shear
correction free results (e.g. Reddy and Robbins, 1994; Touratier, 1991).
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